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Abstract Unmanned aerial vehicle (UAV)-based 
remote sensing has been widely considered recently 
in field scale crop yield estimation. In this research, 
the capability of 13 spectral indices in the form of 5 
groups was studied under different irrigation water 
and N fertilizer managements in terms of corn bio-
mass monitoring and estimation. Farm experiments 
were conducted at Urmia University, Iran. The 

research was done using a randomized complete block 
design at three levels of 60, 80, and 100% of irrigation 
water and nitrogen requirements during four replica-
tions. The aerial imagery operations were performed 
using a fixed-wing UAV equipped with a Sequoia 
sensor during three plant growth stages including 
stem elongation, flowering, and silking. The effect of 
different irrigation water and nitrogen levels on veg-
etation indices and crop biomass was examined using 
variance decomposition analysis. Then, the correla-
tion of the vegetation indices with corn biomass was 
evaluated by fitting linear regression models. Based 
on the obtained results, the indices based on near 
infrared (NIR) and red-edge spectral bands showed a 
better performance. Thus, the MERIS terrestrial chlo-
rophyll index (MTCI) indicated the highest accuracy 
at estimating corn biomass during the growing season 
with the R2 and RMSE values of 0.92 and 8.27 ton/
ha, respectively. Finally, some Bayesian model aver-
aging (BMA) models were proposed to estimate corn 
biomass based on the selected indices and different 
spectral bands. Results of the BMA models revealed 
that the accuracy of biomass estimation models could 
be improved using the capabilities and advantages of 
different vegetation indices.
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Introduction

The rapid growth of the global population and limi-
tations in soil and water resources have highlighted 
the importance of precision agriculture and water 
productivity. Accurate prediction of vegetation bio-
mass and yield ahead of harvesting enables planners 
to improve national food policies and apply a more 
appropriate management (Noureldin et  al.,  2013). 
One of the typical methods for determining the plant 
yield is using destructive measurement methods, 
which are time consuming, costly, and challenging 
due to farm sampling (Afshar et al., 2021a, b). On the 
other hand, the availability and capability of aerial 
and satellite datasets have turned remote sensing into 
a big data technology with enormous applications in 
agricultural sciences and specially crop yield moni-
toring (Feizizadeh et  al.,  2021; Xu et  al.,  2021). In 
this regard, many desirable results have been achieved 
in monitoring vegetation conditions and crop bio-
mass estimation by using spectral vegetation indices 
(Afshar et  al., 2021a, b; Carneiro et  al., 2019; Chen 
et al., 2019; Zhou et al., 2017).

In recent years, many studies have been done on 
monitoring crop performance and conditions using 
satellite images. In one research, Wang et al. (2010) 
suggested models for predicting rice yield at the plant 
potting phase using spectral vegetation ratios such 
as NIR/red and NIR/green. These models showed 
acceptable results in estimating rice yield on a large 
scale by using satellite images. Baio et  al. (2018) 
also reported a positive linear relationship between 
the normalized difference vegetation index (NDVI) 
and cotton yield. Further, in other studies carried 
out by Becker-Reshef et  al. (2010), Mkhabela et  al. 
(2011), Bolton and Friedl (2013), and Huang et  al. 
(2013), different crop yield regression models have 
been developed based on NDVI. Zhou et  al. (2020) 
also presented an approach based on spatiotempo-
ral data fusion by fusing Sentinel-2 and Sentinel-3 
data to reconstruct field-scale leaf area index (LAI) 
imagery over the growth period of winter wheat. Fur-
ther, Tian et al. (2020) have reported that continuous 
measurement of LAI is very crucial for winter wheat 
yield estimation. Zhao et  al. (2020) also reported 
that on farm scale, a prediction model based on 
NDVI, soil-adjusted vegetation index (OSAVI), and 
enhanced vegetation index (EVI) vegetation indices 
resulting from Sentinel-2 had a better performance in 

comparison to the prediction of wheat yield using one 
or multiple vegetation indices. Similarly, other studies 
have been performed using other spectral indices such 
as the normalized difference water index (NDWI) 
(Bolton & Friedl, 2013), EVI (Duncan et al., 2015), 
the modified chlorophyll absorption ratio index 
(MCAR), and the transformed chlorophyll absorption 
ratio index (TCARI) (Sharifi,  2020). Nonetheless, it 
should be noted that in each experimental approach, 
using equations in new locations or at other times can 
be challenging (Lobell, 2013).

As mentioned before, utilizing satellite images has 
led to acceptable accuracy and performance in esti-
mating the plant yield at a large scale. Nevertheless, 
in most regions, problems such as small farm size, 
improper topography, bad climate during the grow-
ing season, huge costs, and limitations in accessing 
data have impeded the application of satellite remote 
sensing (Zhang & Kovacs, 2012; Zhou et al., 2017). 
Capabilities of the unmanned aerial system (UAS) in 
terms of spatial-time resolution, low cost, ease of use, 
and application of different sensors have developed 
this system for improving precision farming (Zhang 
& Kovacs, 2012). Meanwhile, several research stud-
ies have been conducted using UAVs to monitor 
vegetation conditions, diagnose diseases, examine 
vegetation stresses, and do phenotyping (Córcoles 
et  al.,  2013; Fullana-Pericàs et  al.,  2022; Ihuoma 
& Madramootoo,  2017; Verger et  al.,  2014; Zhao 
et al., 2018; Zhou et al., 2021).

In addition, there are several studies in the field of 
crop yield estimation using UAV aerial images based 
on different vegetation indicators. Teoh et al. (2016) 
and Maresma et al. (2020) have reported that NDVI 
derived from UAV aerial images is highly correlated 
with crop yield. Zhou et  al. (2017) used UAV spec-
tral images during several stages of plant growth and 
concluded that indices highly correlated with LAI 
have a better performance in crop yield estimating. 
Carneiro et al. (2019) studied three vegetation indices 
such as NDVI, the normalized difference red-edge 
index (NDRE), and the infrared percentage vegeta-
tion index (IRVI) to evaluate the spatial-time changes 
of soy plants. According to the findings, the best time 
for obtaining data was 45 and 60  days after planta-
tion, and NDRE showed a better performance than 
other indices. Yeom et al. (2019) also used 13 differ-
ent vegetation indices derived from UAV data to ana-
lyze the effect of tillage on plant health and vegetation 
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index performance. NIR-based indices indicated a 
better performance than RGB-based ones, and the 
modified soil adjusted vegetation index (MSAVI) 
had the best performance. In addition, one research 
conducted based on different field managements 
comprising six various treatments of nitrogen, potas-
sium, and combined fertilizers showed that potato 
yield could be estimated using four vegetation indices 
with a correlation coefficient of 0.63 for the image 
data set of 90 days after planting (Li et  al.,  2020). 
Furthermore, Duan et  al. (2021) concluded that 
multi-temporal vegetation index (VI) grain yield esti-
mation models could be more accurate than single-
stage Vls in estimating different rice cultivars. On 
the other hand, some studies have been conducted to 
predict crop yield using plant height. In this regard, 
crop surface models (CSMs) have been developed to 
estimate plant height using digital images (Bendig 
et al., 2015; Geipel et al., 2014). Nevertheless, it has 
been observed that height-yield relationships change 
significantly under different variants and during vari-
ous growing stages (Zhou et al., 2017).

A review and evaluation of research history indi-
cate that numerous studies conducted using vegeta-
tion indices derived from different data acquisition 
equipment (LiDAR, RGB, multispectral and hyper-
spectral sensors) and various data analysis meth-
ods such as regression techniques, ANN, SVR, and 
RFR. Despite rapid developments in remote sensing 
and accessibility of UAV images, difficulties have 
remained and there is no global method to apply for 
all crops in all cases. Although multi-sensor data 
fusion improves the accuracy of crop monitoring, it 
makes the process of data collection more complex 
and difficult, which can lead to reducing the speed of 
monitoring. Also, although advanced analysis meth-
ods improve evaluation accuracy, they require a long 
training time and will have poor performance in small 
sample sizes and lack of samples. On the other hand, 
different farming management and different crops, 
even the same crops in different environments, have 
different characteristics and can be effective on crop 
reflectance and spectral indices. These differences 
require us to carefully distinguish the features of 
crops, use appropriate sensors to collect features, and 
test multiple indices to determine the best biomass 
indices. We hypothesize that different VIs devel-
oped from aerial imagery collected using UAV would 
have a significant and specific relationship with corn 

biomass and the accuracy of biomass estimation can 
be improved by Bayesian averaging of VIs during 
crop growth stages. Therefore, the main objectives 
of this research were to (i) analyze the effect of dif-
ferent irrigation and nitrogen levels on biomass and 
UAV spectral indices, (ii) examine the efficiency of 
the most widely used spectral indices during different 
plant growth stages, and (iii) improve the accuracy of 
biomass estimation models by using the BMA com-
bined approach.

Materials and methods

Research area and experimental treatments

In this research, farm experiments were performed in 
part of the research field of Urmia University, West 
Azerbaijan, Iran, with an area of 4800 square meters, 
coordinates 37°39′18.85″ N, 44°58′20.39″ E (UTM 
497,559.37 m E, 4,167,564.23 m N, zone: 38 S), and 
the elevation of 1370 m, during the 2017–2018 grow-
ing season. The farm had a uniform topography with 
a mild slope of 0.1 m/m and a deep groundwater level 
(Fig. 1). The average annual rainfall in Urmia was 308 
mm, and the minimum and maximum long-term tem-
peratures were 5.3 and 18.1  °C, respectively, with a 
semi-arid climate. To determine the farm soil’s physi-
cal and chemical properties, samples were extracted 
from different soil depths before plantation and tested 
in the laboratory. Some physical and chemical prop-
erties of the farm soil are listed in Table 1.

Farm experiments were carried out based on a 
randomized block factorial design with nine treat-
ments in four replications. The first factor included 
three levels of irrigation (I1  =  100%, I2  =  80%, 
and I3  =  60% of crop water requirement); the sec-
ond one involved three levels of nitrogen applica-
tion (N1  =  100%, N2  =  80%, and N3  =  60% of N 
fertilizer requirement). Thus, T1 to T9 treatments 
defined as T1: I1N1, T2: I1N2, T3: I1N3, T4: I2N1, 
T5: I2N2, T6: I2N3, T7: I3N1, T8: I3N2, and T9: 
I3N3. According to the soil composition test and the 
fertilization recommendation, the amount of the con-
sumed urea fertilizer was determined to be 250 kg/
ha; other treatments were specified as a percentage of 
this amount. The details of the treatments and also the 
workflow of the research are shown in Fig. 2.
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In order to estimate the evapotranspiration of the refer-
ence crop, the Penman-Monteith equation based on the 
FAO-56 method was used. Based on this, the corn irriga-
tion requirement was estimated to be equal to 610  mm/
season for the 100% water requirement treatment (I1); the 
amount of the required irrigation water for other treatments 
was determined based on this value. Irrigation operation 
was then performed using a T-tape drip irrigation system.

Each experimental plot included six planting rows 
with a width of 50 cm and a length of 15 m. The dis-
tances between the plots were considered to be between 
1.5 and 2 m to overcome the effect of the humidity of dif-
ferent irrigation levels. Double-cross maxima 580 hybrid 
cultivars were used to plant corn with 25-cm distances in 
rows (Fig. 3).

Data collection

In this research, an eBee+ fixed-wing UAV 
equipped with a Sequoia multispectral sensor hav-
ing four spectral bands of green, red, infrared, and 
red-edge was used (Fig.  3). All flight parameters, 
including ran strips, imaging stations, flight height, 
longitudinal and latitudinal overlap in images, 
ground sampling distance (GSD) dimensions of the 
image, flight time, and flight distance, were deter-
mined using the emotion3D software. Thus, GSD 
dimensions of the images, flight height, and lon-
gitudinal and latitudinal overlap between images 
were considered to be 10 cm, 110 m, and 80 and 
70%, respectively.

Fig. 1  Location of the research area

Table 1  Test result of physical and chemical properties of soil

Soil depth 
(cm)

Soil texture Total N (%) Organic 
carbon (%)

Potassium 
(ppm)

Phosphorous 
(ppm)

Salinity 
(dS/m)

pH (-) Field capacity 
 (cm3/cm3)

Permanent 
wilting point 
 (cm3/cm3)

0–30 Silty clay 0.11 1.28 485 11.2 0.65 8.2 0.383 0.208
30–60 Clay 0.05 0.60 379 5.2 0.45 8.2 0.415 0.223
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Vegetation indices

In this section, the obtained images were pre-
processed in terms of geometric correction and 

mosaicking of the image using the Pix4Dmapper 
software to extract the vegetation indices. Pix4D-
Mapper software is UAS photography geometric 
correction and mosaic technology based on feature 

Fig. 2  Work flow of the methodology used in this research

Fig. 3  Flight operation and experimental treatments
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matching and structure from motion (SfM) photo-
grammetry technology (Turner et al., 2012). Initially, 
images were processed in a model space to create 
three-dimensional point clouds. The point cloud 
was then used to generate the digital terrain model 
(DTM) required for image correction. Subsequent 
geographic reference images linked together to form 
the mosaic of the study area. Finally, after perform-
ing the required preprocessing, 13 vegetation indices 
were estimated in the form of 5 groups based on the 
relations presented in Table 2.

Crop harvesting and statistical analysis of the data

At the end of the growing season, crop samples 
were obtained from four rows of middle planta-
tions and the weight of the biomass was calculated 
as the fresh weight of the plant. Also, the spectral 
samples of the treatments were extracted from UAV 
images simultaneously with crop samplings during 
three plant growth stages including stem elonga-
tion (F1), flowering (F2), and silking (F3). Finally, 
to determine the effectiveness of the treatments, the 

Table 2  The utilized vegetation indices for monitoring vegetation condition

Ref. Equation Bands Group Index

Tucker (1979) (green − red)∕(green + red) Green, red 1 GRVI
(green red vegetation index)

Bendig et al. (2015) (green2 − red2)∕(green2 + red2) MGRVI
(modified green red vegetation 

index)
Gitelson et al. (2003) (nir − green)∕green Green, NIR 2 GCI

(green chlorophyll index)
Gitelson et al. (2003) (nir − green)∕(nir + green) GNDVI

(green normalized difference 
vegetation)

Rouse et al. (1974) (nir − red)∕(nir + red) Red, NIR 3 NDVI
(normalized difference vegetation)

Huete (1988) 1.5 × (nir − red)∕(nir + red + 0.5) SAVI
(soil adjusted vegetation index)

Qi et al. (1994) 0.5 × (2nir + 1 −
√

(2nir + 1)2 − 8(nir − red)) MSAVI
(modified soil adjusted vegetation 

index)
Peñuelas et al. (1994) 1.16 × (nir − red)∕(nir + red + 0.16) OSAVI

(optimized soil adjusted vegetation 
index)

Gitelson et al. (2003) (0.2 × nir − red)∕(0.2 × nir + red) WDRVI
(wide dynamic range vegetation 

index)
Jiang et al. (2008) 2.5 × (nir − red)∕(1 + nir + 2.4 × red) EVI2

(enhanced vegetation index 2)
Gitelson and Merzlyak (1994) (nir − rededge)∕(nir + rededge) NIR, red edge 4 NDRE

(normalized difference red-edge 
index)

Gitelson et al. (2003) (nir∕rededge) − 1 RECI
(red-edge chlorophyll index)

Dash and Curran (2004) (nir − rededge)∕(rededge − red)   Red, red edge, NIR 5 MTCI
MERIS terrestrial chlorophyll 

index
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variance decomposition technique (ANOVA) was 
used by applying the SPSS statistical software; also, 
the treatment means were compared using Duncan’s 
multiple range test.

Model development

Development of linear regression models

In addition to examining the effect of irrigation water 
and nitrogen levels on VIs, the capability of these 
indices in estimating crop biomass was investigated 
as well. In this regard, simple linear regression mod-
els between spectral indices and vegetation biomass 
were developed as independent and dependent vari-
ables, respectively. The first approach in regression 
equations’ fitting was to estimate plant biomass dur-
ing different growing season stages and compare the 
indices during the growth season. Therefore, linear 
regression relationships were proposed individually 
for the first, second, and third stages of the aerial 
survey. On the other hand, the second approach was 
developing regression models for the entire growing 
season, considering that the planting date of plants 
might be different in a vast area.

Development of the combined model using the BMA 
method

In crop biomass modeling by using various indices, 
uncertainty in the input data may cause multiple 
outcomes and bring uncertainty in the final results. 
In most cases, it is attempted to choose one of the 
models using statistical methods and simulate data 
by these models, which can cause an error due to the 
possibility of other scenarios. Hence, considering the 
models’ outcomes and possible scenarios in simula-
tion can increase the accuracy and raise the reliabil-
ity of the model’s predictions. One of the most com-
mon methods used for combining model results is the 
Bayesian model averaging (BMA) method, which 
was carried out in R (version 3.5.1). In this method, 
it is assumed that all models are beneficial and can be 
used in simulation; however, the degree of certainty 
is different, such that it can be defined by attributing 
weight to each. The weight of each simulation and the 
variance of their distribution function are determined 
using the posterior probability distribution function 
of each. Then, by using the defined weights, one of 

the simulation models is selected and a random num-
ber is chosen using their distribution function. The 
weight of each simulation depends on its correlation 
with the observation data, as measured by the pos-
terior probability of each model. If we assume that 
f1, f2, …, and fk are simulation models (simulated 
scenarios) and their distribution function is gk(y|fk), 
then the BMA predictor model is defined as shown 
below (Hoeting et al., 1999; Raftery et al., 2005):

where wk is the possibility of choosing simulation 
k as the best simulation, which is determined based 
on the performance of the simulation k. These values 
have probabilistic characteristics in such a way that 
each is non-negative and the sum of all of them is 
equal to one ( 

∑k

k=1
wk = 1).

Assessment criteria of the models’ performance

In this research, to evaluate the obtained results, 
two common statistical indices, including root mean 
square error (RMSE) and coefficient of determination 
(R2), were used:

(Willmott & Matsuura, 2005)

(Zou et al., 2003)

where N is the sum of data, X is the calculated output, Y is 
the measured output, and X and Y are the average values.

Results

Variations of VIs under various experimental treatments

Figure 4 represents the results of the 13 spectral indi-
ces obtained during three aerial surveys, along with 
the reflectance changes of the related bands for each 
index. As can be seen, changes in the indices dur-
ing the growing season were not similar. Indices of 
groups 1 and 2 and some of group 3, such as NDVI, 
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OSAVI, and WDRVI, showed a different behavior, as 
compared to other indices. These values were higher 
during the start of the season and did not change in 
the second stage in comparison to the end of the sea-
son. Also, the evaluation of VIs during different treat-
ments showed that the effect of different irrigation 
water and N fertilizer levels on VIs was different. For 
example, the obtained values of GRVI and MGRVI 
for the T1 treatment with 100% of irrigation water 
and the N fertilizer requirement were not the highest 

during the second and third flights in contrast to other 
indices; also, they were lower than other treatments. 
Nonetheless, values of green, red, red-edge, and NIR 
spectral bands showed a similar behavior; their val-
ues were more in the second flight than in the first 
one; also, they were higher in the third flight rather 
than the second one, which was in accordance with 
the plant growth.

Based on Fig. 4, the indices of group 1 decreased 
during the growing season; the highest values of 

Fig. 4  Vegetation indices and spectral bands under different treatments during the growing season (F1, flight1; F2, flight2; and F3, 
flight3 during first, second, and third stages of measurements)
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GRVI and MGRVI were in the first flight at the begin-
ning of the growing season. Meanwhile, despite plant 
growth and an increase in the green and red bands 
during the second and third flights, the values of the 
indices obtained from these bands had a decreasing 
trend. Similarly, the indices of group 2 also had the 
highest values at the beginning of the growing sea-
son; in the following stages of plant growth, their val-
ues decreased in most treatments despite the increase 
of the green and NIR spectral bands. Among the indi-
ces of group 3, NDVI, WDRVI, and OSAVI showed 
a behavior different from that of SAVI, MSAVI, and 
EVI2. These differences were due to mathematical 
relationships and different coefficients considered 
for red and NIR bands. Most indices of group 3 had 
high values at the beginning of the growing season, 
not showing a significant change during the second 
and third flights; they were saturated at the end of the 
growing season. Unlike other indices, during the third 
flight, WDRVI exhibited a large decline, as compared 
to the second and first flights; in contrast, EVI2 was 
increased during the second and third flights, as com-
pared to the previous stage.

Examination of the indices in groups 4 and 5 
showed that NDRE, RECI, and MTCI increased with 
increasing the red, red-edge, and NIR bands dur-
ing the growing season; however, they did not reach 
a saturation state in the third stage. One of the most 
important reasons for this issue is using the red-edge 
spectral band, which is highly sensitive to leaf chloro-
phyll, increasing with plant growth.

Statistical analysis of the effect of irrigation water and 
nitrogen application levels on corn biomass and VIs

Based on the variance decomposition results, the 
effects of irrigation water and N fertilizer levels and 
the interaction of irrigation water × N fertilizer on 
corn biomass were significant during three flights 
(p  <  0.01). However, the effect of irrigation and N 
fertilizer levels on VIs was different; the obtained 
results, thus, indicated the importance of the utilized 
spectral bands.

In addition, the results of comparing the means of 
irrigation water and N fertilizer levels are presented 
in Table  3. As can be seen, the biomass of corn 
decreased significantly with the reduction of irriga-
tion and N fertilizer levels during all three stages; 
the highest value was obtained at a level of 100% of 

irrigation water and N fertilizer requirement. Based 
on the results of stage 3, the average crop biomasses 
for I1, I2, and I3 treatments were 84.809, 80.488, and 
67.667 ton/ha, respectively; meanwhile, these values 
for N1, N2, and N3 treatments were 89.074, 75.361, 
and 68.529 ton/ha, respectively.

However, examining the effect of different irriga-
tion water and N fertilizer levels on some VIs showed 
a different result. Unlike corn biomass, GRVI had the 
highest values at I2 treatments with 80% of irrigation 
water requirement during the second and third stages; 
the highest MGRVI values were achieved at I2 treat-
ments during all measurement stages. On the other 
side, these indices were decreased in accordance with 
a decline in the consumed N fertilizer during the first 
and second measurement stages; it was only in the 
third stage that N2 and N3 treatments with 80 and 
60% of the N fertilizer requirement showed a larger 
value, as compared to N1 treatments, with 100% of 
the N fertilizer requirement. In the same way, the 
maximum values of GCI and GNDVI indices were 
obtained at I1 and N1 treatments; it was only in N2 
treatments that a larger value was observed, as com-
pared to other levels. Furthermore, as shown in Fig. 4, 
the values of the indices of groups 1 and 2 decreased 
over time despite plant growth. Meanwhile, the val-
ues of the third and second measurement stages were 
obtained to be less than those of the first stage. There-
fore, using the green and red bands could not cor-
rectly depict the level of plant growth and biomass of 
corn by irrigation water and N fertilizer levels during 
the growing season.

As can be seen in Table 3, among indices of group 
3, NDVI and WDRVI showed a weaker performance 
than other ones. Throughout all measurement stages, 
NDVI did not show a significant difference between 
I1 and I2 treatments with 100 and 80% of irrigation 
water requirement levels; at the third measurement 
stage, the value of this index for N3 and N2 treat-
ments was higher than that in N1 treatments. On the 
contrary, EVI2 and MSAVI showed a better perfor-
mance than other indices; in most cases, they could 
show a significant difference between irrigation and 
N fertilizer levels.

Examination of the values of groups 4 and 5 indi-
ces showed that these indices had significant varia-
tions in regard to the changes in irrigation water and 
N fertilizer application levels; in all measurement 
stages, they achieved the maximum values in I1 and 
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N1 treatments with 100% of irrigation water and N 
fertilizer requirement. Also, their values were signifi-
cantly more in 80 rather than 60% of irrigation water 
requirement treatments. Further, while indices of the 
first, second, and third groups at the end of the grow-
ing season did not show a significant change between 
levels 80–100 and 60–80% of the N fertilizer require-
ment, NDRE, RECI, and MTCI resulted in a signifi-
cant difference between all levels of irrigation water 
and N fertilizer, thus leading to better results. This 
was due to using the red-edge band in these indices, 
which was sensitive to plant chlorophyll, creating sig-
nificant differences when using different N fertilizer 
levels. Other similar studies have shown that NDRE 
could have a better performance than NDVI in iden-
tifying the inhomogeneities of olive vegetation (Jorge 
et al., 2019).

For a more detailed examination, the results of 
comparing the means analysis for corn biomass and 
the five best indices of each group are represented 
individually for each treatment in Fig. 5. A research 
of the results related to corn biomass indicated that 
the T1 treatment with 100% of irrigation water and N 
fertilizer requirement had the highest biomass during 
the entire plant growing season; its values for the first 
to third measurements were, respectively, 11.462, 
45.980 and 96.263  ton/ha. Additionally, in the last 
measurement stage, it was observed that after T1, the 
highest crop biomass was equal to 92.008 and 81.515 
ton/ha for T4 and T2 treatments, respectively; T9 had 
the lowest crop biomass when using 60% of irriga-
tion water and N fertilizer requirement. Based on the 
results of the research done by Lisar et al. (2012) and 
Viero et al. (2017), water stress intensifies the chloro-
phyll stresses in plant leaves since nutrition transpor-
tation in a plant is done via water; also, a reduction 
in plant water content increases nitrogen losses due to 
volatilization.

Also, it was observed that during the first and sec-
ond measurement stages, GCI of the T1 treatment 
was significantly higher than that in other treatments; 
however, in the third stage, T2 had the highest value 
of this index. Thus, the maximum values of GCI in 
the first, second, and third measurement stages were 
8.428, 5.594, and 4.786, respectively. Hence, this 
index had an acceptable performance during the 
plant’s primary growing stages; however, it should 
be noted that its value decreased along with the crop 
growth; therefore, it should not be used in researching 

two regions with different plantation times. Similarly, 
GRVI had an acceptable performance during the pri-
mary stage, appropriately showing the vegetation 
state according to biomass and crop growing condi-
tions. However, during the second and third meas-
urement stages, T4 and T5 had the largest amount of 
GRVI; even in the third stage, the value of this index 
in T9 was significantly higher than that in T1 and T2, 
thus signifying the low accuracy of this index at the 
end of the growing season.

Investigation of EVI2, RECI, and MTCI changes 
showed that the behavior of these indices was similar; 
contrary to GCI and MGRVI, their values increased 
as the plant grew during the growing season. In all 
measurement stages, the maximum value of these 
indices occurred in T1; in most cases, they directly 
changed following the variation in the crop biomass. 
For example, as can be seen in the color image of 
MTCI (Fig. 5), in the third flight, similar to the crop 
biomass behavior, the highest values of this index 
resulted in the treatments T1, T2, and T3, which were 
1.269, 1.049, and 1.147, respectively; meanwhile, 
the lowest values were observed in T8 and T9, with 
the values of 0.620 and 0.611, respectively. In some 
cases, this did not occur; changes in indices were not 
in accordance with those in the biomass level. For 
instance, EVI2 of T8 in the third measurement stage 
was more than its value on T5, T6, and T7. Mean-
while, the amount of biomass in T8 was less than that 
in the mentioned treatments.

Estimation of crop biomass using vegetation indices

The relationships between corn biomass and 13 spec-
tral indices during three growing stages and the entire 
growing season were analyzed (Fig. 6). Based on the 
obtained results in the first stage, indices of groups 
4 and 5 showed a better performance than others; R2 
coefficients were obtained to be equal to 0.82, 0.85, 
and 0.84 for NDRE, RECI, and MTCI, respectively. 
Additionally, the performance of the indices in group 
3 was better than that in groups 2 and 1. On the con-
trary, during the second flight, R2 and RMSE coeffi-
cients of the second group of VIs, especially WDRE, 
were better than those of other groups and indices. 
It should be noted that WDRE had a weaker perfor-
mance than other indices during the first and third 
flights; however, during the second flight, it had the 
best fitting with plant biomass. This indicated how 
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many coefficients used in equations could be effec-
tive. Similar to the first flight, in the third flight, the 
indices of groups 4 and 5 provided a more accurate 
estimation of corn biomass; however, the R2 and 
RMSE coefficients were reduced when compared 
with the first flight results. As mentioned in other 

researches, the indices were reduced at the end of the 
growth stages.

However, the results for the entire season showed 
that the performance of indices was different; 
four indices including MTCI, RECI, NDRE, and 
EVI2, with R2 values of 0.92, 0.89, 0.87, and 0.6, 

Fig. 5  Comparing means of VIs under irrigation water × N fertilizer interactions



Environ Monit Assess        (2023) 195:1081  

1 3

Page 13 of 20  1081 

Vol.: (0123456789)

respectively, and the RMSE values of 8.27, 9.69, 
10.32, and 18.3 ton/ha, respectively, had the best per-
formance, as compared with other indices. Therefore, 
the indices of groups 1 and 2, and NDVI, MSAVI, 
OSAVI, and WDRVI of the third group did not give 
an accurate estimate of corn biomass during the entire 
growing season; thus, using these indices for the 

estimation and comparison of performance could not 
be suggested in farms with various plantation times.

Figure 7 represents the regression equation of the 
given fitting for the best indices of each group, along 
with NDVI, which is widely used in most researches. 
As can be seen, GRVI, GCI, and NDVI indices were 
inversely related to corn biomass in the third flight 

Fig. 6  Coefficients of 
correlation and RMSE for 
regression relationships of 
biomass-vegetation indices 
during various measure-
ment stages (F1, flight1; F2, 
flight2; and F3, flight3 dur-
ing first, second, and third 
stages of measurements)

Fig. 7  The relationships for corn biomass and vegetation indices
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stage. This could be due to the effect of different 
irrigation water and N fertilizer levels on the men-
tioned indices. According to the results represented 
in Table 3, GRVI for the treatment involving 80% of 
irrigation water requirement (I2) was more than that 
for the treatments consisting of the 100% level of irri-
gation water requirement (I1); further, GCI for the 
treatments with 60% of irrigation water requirement 
(I3) was higher than that of the 80% one. Meanwhile, 
NDVI did not significantly change in the treatments 
with the irrigation water requirements of 100, 80, and 
60%. On the other hand, the effect of N fertilizer lev-
els on spectral indices indicated that GRVI, GCI, and 
NDVI indices were more in the treatments involving 
80 and 60% of the N fertilizer requirement, as com-
pared to those consisting of 100% of the N fertilizer 
requirement. These factors also caused these indices 
not to have an acceptable estimate of crop biomass 
during the growing season; therefore, a negative slope 
was obtained for the equation of the entire grow-
ing season. The R2 coefficients of GRVI, GCI, and 
NDVI indices during the entire growing season were 
obtained to be 0.15, 0.27, and 0.05, respectively; the 
RMSE values of these indices were also 26.61, 24.66, 
and 28.07, respectively. On the contrary, examination 
of EVI2, RECI, and MTCI indices’ graphs showed 
that despite the proper fitting of these indices dur-
ing the first, second, and third stages, they performed 
well during the entire growing season. According to 
the statistical analysis, the effects of different levels 

of irrigation water and N fertilizer on these spectral 
indices were observed, and they were raised with an 
increase in irrigation water and N fertilizer consump-
tion during the growing season. Thus, the R2 and 
RMSE coefficients of the entire season were 0.6 and 
18.3, respectively for EVI2; these were 0.89 and 9.69, 
respectively, for RECI. Finally, these were 0.92 and 
8.27 for MTCI, respectively.

Therefore, as can be seen, the type and combina-
tion of different spectral bands led to different results 
in crop biomass estimation. For instance, the red-edge 
reflectance was more sensitive to vegetation chloro-
phyll in comparison to the red one; with an increase in 
the consumed nitrogen, the indices based on the red-
edge were increased significantly as well. On the other 
side, the reflectance of the NIR band was highly sensi-
tive to LAI; as the plant was grown, LAI was increased, 
leading to the rise of reflectance in this spectral range; 
meanwhile, in the same condition, red-edge reflec-
tance was decreased, reaching the saturation state (Xie 
et al., 2018).

Estimation of crop biomass using BMA models

To increase the accuracy of the estimation models of 
corn biomass and to use the advantages of different 
spectral indices, BMA models were created based 
on different inputs (Fig.  8). During the selection 
of the inputs for the BMA models, an attempt was 
made to choose indices with various bands and best 

Fig. 8  Relationships for corn biomass and VIs
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performance; based on this, four BMA models were 
selected, as shown below:

• BMA1: MTCI, RECI, MSAVI, GCI, GRVI
• BMA2: MTCI, NDRE, RECI
• BMA3: MTCI, RECI, EVI2
• BMA4: MTCI, WDRVI, GCI

The results showed that BMA1 had the best per-
formance in all three plant growth stages due to the 
use of 5 vegetation indices. The R2 coefficients of 
this model during the first, second ,and third stages 
were 0.9, 0.89, and 0.75, respectively; also, RMSE 
values were 0.22, 2.31, and 5.73 ton/ha, respectively 
(Fig. 9). The BMA2 model had a better performance 
than BMA3 and BMA4 models in response to not 
using the NDRE index at the first and third stages. On 
the contrary, the BMA3 model led to better results, 
as compared to BMA2 and BMA4 models, due to 
the use of the EVI2 index, which had a better perfor-
mance in the second stage in comparison to the indi-
ces of groups 4 and 5.

Additionally, examination of the modeling results of 
crop biomass during the growing season showed that 
the BMA1 model, with an R2 value equal to 0.93 and an 
RMSE value equal to 7.45 ton/ha, had the best results 
when compared with other indices and BMA models.

Discussion

Studies of different indices showed that using different 
spectral bands in the form of mathematical relation-
ships with different coefficients could lead to various 
results whose effects could differ depending on the 

plant type. It should be noted that most mathematical 
relationships used for spectral indices are in the frac-
tional form, and the value in the denominator can sig-
nificantly change the final result (Fig.  4). As can be 
seen in the indices of group 1, since the green and red 
bands were used as the denominator of these indices 
and the average values of these bands at the beginning 
of the growing season were between 0.055–0.064 and 
0.026–0.046, the final value of VIs was higher, while 
the plant was still at its primary growing stages. This 
effect was intensified in MGRVI, where its bands were 
squared. Similarly, regarding the indices of the second 
group for which red and green bands were used as the 
denominators, the index value at the beginning of the 
growing season was obtained to be higher in compari-
son to that in the following stages since the denomina-
tor values were low at the initial stages. In the indices of 
the third group, the NIR band was used as the denomi-
nator and the average range of this spectral band at the 
beginning of the season was at 0.308–0.523 range; dif-
ferent results were, therefore, obtained. In other words, 
the value of indices such as SAVI, MSAVI, and EVI2 
was in accordance with plant growth at the beginning 
of the growing season since the utilized coefficients 
had the raised denominators of their terms. In contrast, 
this was not the case in other indices of group 3, such 
as NDVI, OSAVI, and WDRVI (Fig. 4).

On the contrary, NDRE, RECI, and MTCI were 
raised following plant growth, leading to an increase 
in the values of the spectral bands. One of the effec-
tive factors is the use of the red-edge spectral band 
in the denominator of indices; the average range of 
this band was equal to 0.293–0.404, 0.333–0.453, and 
0.366–0.495, respectively, throughout the three meas-
urement stages (Fig. 10).

Fig. 9  Coefficients of correlation and RMSE value for BMA models during measurement stages
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Investigation of the effect of irrigation water and 
nitrogen application levels on VIs showed that in 
all growing stages, most indices were significantly 
affected by water and nitrogen levels. However, com-
paring the means analysis of the treatments showed 
that changes in some of the indices of groups 1, 2, 
and 3 were not in accordance with an increase or 
decrease in irrigation water and nitrogen levels, or 
the interaction between these two factors. This signi-
fied the different effects of irrigation water and nitro-
gen levels on various spectral indices; some indices 
such as MTCI, RECI, and NDRE, which included the 
red-edge spectral bands, could properly indicate the 
changes in irrigation water and nitrogen. Using indi-
ces based on the red-edge spectral band is superior in 
terms of identifying nitrogen concentration and plant 
biomass estimation. The spectral range of the red-
edge band was from 680 to 750 nm, thus indicating 
the transition from the chlorophyll absorption band 
in the red band region to the reflectance range of the 
NIR region (Clevers et al., 2002). Therefore, in addi-
tion to an increase of plant reflectance in this region, 
sensitivity to plant chlorophyll was higher than 
that in the red band region (Horler et  al.,  1983; Xie 
et al., 2018). Also, comparing the means analysis of 
the treatments showed that most indices of groups 1, 
2, and 3 did not significantly differ during the second 
and third measurement stages, reaching a saturation 
state. The results of various studies have shown that 
the sensitivity of VIs to biophysical parameters such 
as LAI is reduced as vegetation density is increased 
to more than a threshold (Gitelson et al., 2002; Small 
& Lu, 2006). Moreover, similar to our study, Colovic 
et al. (2022) studied the water and nitrogen status of 
sweet maize crop by hyperspectral vegetation indi-
ces and concluded that red-edge-based indices had 
higher sensitivity to nitrogen levels, and it is critical 
to select suitable vegetation indices to monitor the 

plant eco-physiological response to water and nitro-
gen stresses.

Examination of the linear regression models also 
showed the appropriateness of indices in groups 4 and 
5 in estimating corn biomass, especially MTCI, thus 
showing a better performance than other indices by 
applying three NIR, red-edge, and red spectral bands. 
Moreover, the effect of relationships and coefficients 
used in spectral indices was significant. For instance, 
a comparison of NDVI and EVI2 indices showed 
that despite using similar spectral bands in these two 
indices, their performances were significantly dif-
ferent during the entire growing season; NDVI was 
decreased with plant growth; in contrast, EVI2 was 
increased directly in proportion to the plant growth. 
These results were consistent with those obtained by 
Coelho et al. (2018), who concluded that using NDVI 
and IRVI indices, with the same red and NIR bands, 
led to different results in estimating the wheat yield. 
Vivekar (2019) also carried out a research for estimat-
ing crop yield from multispectral UAV images and 
fixed tower sensors. Based on the obtained results, 
values of NDVI also were high in the beginning of 
the crop growth.

Therefore, the type and structure of different spec-
tral bands lead to different results in crop biomass 
estimation. For instance, the red-edge reflectance is 
more sensitive to vegetation chlorophyll, and with an 
increase in the consumed nitrogen, the indices based 
on the red-edge increase significantly as well. On the 
other side, NIR is highly sensitive to LAI, and as the 
plant grows, reflectance of NIR band rises due to LAI 
increasing (Xie et al., 2018).

According to the different properties of each VI 
in terms of using various equations, coefficients, and 
bands, the selection of the best index must be based 
on a comprehensive analysis, considering the existing 
limitations and environmental circumstances. On the 

Fig. 10  Changes in reflectance range of spectral bands during different growing stages
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other hand, different plants can have various effects 
on VIs due to their specific and complicated charac-
teristics (Xue & Su,  2017). In addition to the nitro-
gen concentration and LAI, other parameters such 
as the structure of leaves and vegetation architecture 
can be effective on the plants’ reflectance. For exam-
ple, the leaf angle distribution of corn and alfalfa is 
different from that of wheat and barley (Houborg & 
Boegh,  2008; Viña et  al.,  2011). So, by considering 
these factors, a proper combination of the indices 
could be used for practical applications. Therefore, 
using BMA models based on a combination of dif-
ferent indices and utilizing the advantages of each 
can provide a proper estimation of plant biomass. 
Based on the results of this research, using the BMA 
approach can improve the performance of VIs to a 
significant level.

Conclusion

In recent years, due to the extensive use of remote sens-
ing drones, the qualitative and quantitative monitoring 
of agricultural farms using this technology and veg-
etation spectral indices has grown significantly. Given 
the progress made in designing platforms and sensors, 
developments of various vegetation indices, as well as 
the different spectral behaviors of various plants, intro-
ducing a comprehensive methodology is essential for 
farmers and managers to precisely assess crop produc-
tion. The main objective of this research was to apply 
different spectral and data-driven approaches to UAV 
images to identify the efficiency of each technique. For 
this purpose, in this paper, while examining and ana-
lyzing the variation of VIs under different irrigation 
and nitrogen fertilizer management types, the BMA-
based models were used to provide hybrid models for 
estimating the maize biomass with high accuracy.

Analysis of various VIs showed that using differ-
ent spectral bands with different coefficients could 
create various results whose effects might be dif-
ferent during plant growth. Indices such as MTCI, 
RECI, and NDRE, which include the red-edge spec-
tral bands, could properly indicate variations in irri-
gation water and nitrogen levels, thus playing a vital 
role in terms of precision agriculture and saving 
water and fertilizer resources. For example, during 
the third flight, the highest values of MTCI resulted 
in the treatments T1, T2, and T3, which were 1.269, 

1.049, and 1.147, respectively; meanwhile, the low-
est values were observed in T8 and T9, with values 
of 0.620 and 0.611, respectively. Also, fitting linear 
regression models showed the capability of the indi-
ces in groups 4 and 5 in estimating corn biomass. 
Vegetation indices such as MTCI, RECI, NDRE, 
and EVI2, with R2 values of 0.92, 0.89, 0.87, and 
0.6, respectively, and RMSE values of 8.27, 9.69, 
10.32, and 18.3 ton/ha, respectively, had the best 
performance in estimation corn biomass. Further-
more, some BMA models were developed based on 
different inputs in order to increase the accuracy 
of the corn biomass estimation models. The results 
showed that BMA1 had the best performance in all 
plant growth stages due to the use of 5 vegetation 
indices. The R2 coefficients of this model during the 
first, second, and third stages were 0.9, 0.89, and 
0.75, respectively; also, RMSE values were 0.22, 
2.31, and 5.73 ton/ha, respectively. Therefore, the 
results of BMA models showed that by using such a 
procedure, we can present high accuracy models for 
crop yield estimation under different weather condi-
tions, crop types, and agricultural managements.

This research showed that numerous factors such 
as water and fertilizer management, VIs with differ-
ent spectral bands and coefficients, and different crop 
characteristics in terms of vegetation structure and 
reflectance can cause uncertainty, thus leading to 
different results in estimating crop biomass. There-
fore, instead of selecting specific VIs that are lim-
ited to the environmental and managerial conditions 
of the region, it is necessary to apply the approach of 
hybrid models that includes all features and benefits 
of different indices. So, given UAV data availability 
for precision agriculture, the current research can be 
considered a progressive research in the domain of 
agriculture and remote sensing sciences by applying 
different data-driven approaches and identifying the 
efficiency of each method.
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